Note
Click here to download the full example code
Introduction to Distributions¶
When you have a few chains and want to contrast them all with each other, you probably want a summary plot.
To show you how they work, let's make some sample data that all has the same average.
from chainconsumer import Chain, ChainConsumer, Truth, make_sample
# Here's what you might start with
df_1 = make_sample(num_dimensions=4, seed=1, randomise_mean=True)
df_2 = make_sample(num_dimensions=5, seed=2, randomise_mean=True)
print(df_1.head())
Out:
A B C D log_posterior
0 0.669882 3.819161 8.467454 15.254021 -2.901461
1 -0.122759 5.017488 8.669994 15.114327 -2.725776
2 0.245389 4.476860 9.198622 15.034753 -3.287342
3 -2.490597 6.430734 10.883342 13.031819 -4.017329
4 -1.774488 5.114378 10.198350 13.224094 -3.925202
Using distributions¶
# And now we give this to chainconsumer
c = ChainConsumer()
c.add_chain(Chain(samples=df_1, name="An Example Contour"))
fig = c.plotter.plot_distributions()

If you want the summary stats you'll need to keep it just one
chain. And if you don't want them, you can pass summarise=False
to the PlotConfig.
When you add a second chain, you'll see the summaries disappear.
c.add_chain(Chain(samples=df_2, name="Another contour!"))
c.add_truth(Truth(location={"A": 0, "B": 0}))
fig = c.plotter.plot_distributions(col_wrap=3, columns=["A", "B"])

Total running time of the script: ( 0 minutes 1.518 seconds)
Download Python source code: plot_3_distributions.py