Note
Click here to download the full example code
Introduction to Distributions¶
When you have a few chains and want to contrast them all with each other, you probably want a summary plot.
To show you how they work, let's make some sample data that all has the same average.
from chainconsumer import Chain, ChainConsumer, Truth, make_sample
# Here's what you might start with
df_1 = make_sample(num_dimensions=4, seed=1, randomise_mean=True)
df_2 = make_sample(num_dimensions=5, seed=2, randomise_mean=True)
print(df_1.head())
Out:
A B C D log_posterior
0 -1.465718 5.174256 10.635668 13.410997 -2.720730
1 -0.263183 4.116389 9.158892 14.286064 -2.753526
2 1.964528 3.259570 7.403567 16.099272 -5.779732
3 1.391785 3.090585 7.078695 16.545356 -4.882716
4 -0.903425 3.219918 10.635006 13.477061 -7.056437
Using distributions¶
# And now we give this to chainconsumer
c = ChainConsumer()
c.add_chain(Chain(samples=df_1, name="An Example Contour"))
fig = c.plotter.plot_distributions()
If you want the summary stats you'll need to keep it just one
chain. And if you don't want them, you can pass summarise=False
to the PlotConfig
.
When you add a second chain, you'll see the summaries disappear.
c.add_chain(Chain(samples=df_2, name="Another contour!"))
c.add_truth(Truth(location={"A": 0, "B": 0}))
fig = c.plotter.plot_distributions(col_wrap=3, columns=["A", "B"])
Total running time of the script: ( 0 minutes 1.574 seconds)
Download Python source code: plot_3_distributions.py